
A UCD Method for Modeling Software Architecture 
Qingyi Hua, Hui Wang, Claudio Muscogiuri, Claudia Niederée, and Matthias Hemmje 

Fraunhofer – IPSI 
Dolivostr. 15, D-64293 Darmstadt, Germany 

{hua, hwang, muscogiuri, niederee, hemmje}@ipsi.fhg.de 

ABSTRACT 

User-centred design (UCD) is a complement to software design approaches rather than a replacement for them. It 
implies that UCD concentrates on the process of modelling knowledge about usage of a system rather than on 
representation of technical features and constraints particular for software design. However, there still lacks a seamless 
support for the transformation process from usage to design because of the non-linear property of the process. In this 
paper, we present the ADOI (Another Dimension of Information) approach that aims at providing support for contextual 
development. Due to its declarative specifications ADOI allows explicit conceptualization of usage, as well as of 
contextual linkage required for the transformation. A conceptualization-driven architecture is in ADOI open with 
respect to different perspective for the user interface and the system. As a result, ADOI realizes the role of a 
complement by providing a development support that can be integrated with different design approaches. 
 

1. INTRODUCTION 

To achieve usable systems, an increasing number of 
people from the Human-Computer Interaction (HCI) and 
Requirements Engineering (RE) communities are getting 
a consensus to user-orientation [1, 2, 3]. Knowledge 
about the context in which the systems will be used (e.g. 
users, and their tasks) is considered equally important for 
guiding the process of software development, as the 
knowledge about the features of the problem domain. 
However, a recent study [3] reveals that only less than 
30% User-Centred Design (UCD) approaches were used 
in actual projects. Furthermore, many people involved in 
the projects acknowledged that they had integrated 
different methods and models in their processes, because 
of the lack of mature development support in these UCD 
approaches.  

According to ISO 13407 standard [4], in fact, UCD is 
complementary to existing design methods and provides 
a human-centred perspective that can be integrated into 
different forms of design process in a way that is 
appropriate to the particular context. It implies that 
UCD concentrates on modelling knowledge required for 
achieving problem-solving goals instead of technical 
features and constraints that are particular for a class of 
design models. However, the latter comes into play when 
transforming knowledge content into the appropriate 
forms for the existing design methods. To provide an 
effective support for the transformation, we argue that 
software architecture typically plays a key role as a 
bridge between requirements and implementation [5] 
since it is required for delivering contextual knowledge 

to design models but still in technology-independent 
way. 

The architecture of an interactive system can be 
grossly conceived as its organization of a presentation 
and functional layer as a collection of interacting 
components. The components of the functional layer, 
also called function core (FC), realize knowledge 
(entities, actions) related to the problem domain that the 
system is intended to provide. The components of the 
presentation layer, also called user interface (UI), are 
responsible for users viewing and controlling concepts 
and relationships related to their tasks rather than 
directly to domain features. Coutaz [6] has identified a 
third layer, a mediator that specifies a protocol for 
control strategy and data exchange between the UI and 
the FC. The role of the mediator is to act as a working 
memory that represents the state of the FC in terms 
relevant to the user tasks but the representation is still 
presentation-independent, and transforms the user tasks 
into the actions of the FC.  

It is difficult to ensure the architectural specification 
for the mediator in technology-independent way without 
contextual knowledge, because of the significant 
difference between the functional assumptions made for 
the UI and those made for the FC. The contextual 
knowledge is to be found outside the system itself since 
it is a kind of non-functional requirements derived from 
usability. This suggests establishing a contextual linkage 
between usage and domain. 

Rolland [7] identifies two sub-types of requirements: 
user-defined requirements that arise from people in the 
organization and reflect their goals, intentions and 



wishes; domain-imposed requirements that are facts of 
nature and reflect domain laws. This means that the 
universe of discourse has to be partitioned into two parts, 
that is, the usage world  and the subject world  [8]. The 
usage world describes the context in which the system is 
to be used, or the context of use  [4] and consists of the 
characteris tics of the intended users, the tasks the users 
are to perform, and the environment in which the users 
are to use the system. The subject world describes the 
context in which the system is to be set up, and consists 
of real world objects that are to be represented in the FC. 
We argue that there is a third sub-type of requirements, 
that is, the contextual linkage between the two worlds. 

The traditional way of engineering systems is 
through conceptual modelling that generates a 
specification for the design of the envisioned system. 
Conceptual modelling [11] traditionally is used to 
understand and represent features related to the subject 
world. In order to model the usage world, a number of 
goal- and task-based approaches have been proposed. 
However, the contextual linkage is still lacking.  

For instance, when considering the goal-based use-
case model for architectural modelling, it turns out that a 
use case is delivered for a given set of features (in the 
subject world) [9]. As a result, the use case must be 
refined as a set of traditional use cases before the 
architectural specification can be specified. This is 
typically not a user-centred way. Task-based approaches 
demonstrate a similar problem e.g. [10]. Instead of 
modelling the contextual linkage, they attempt to 
decompose a task down to the primary forms of the task 
in order to provide a connection between the task and the 
actions that implements the task in the subject world.  

UCD requires both of the contextual linkage between 
the two worlds and the mediator that deliver the linkage 
to design models because of the non-linear 
transformation process from usage to design. In this 
paper, we present the ADOI (Another Dimension of 
Information) approach that aims at providing support for 
contextual development. Due to its declarative 
specifications ADOI allows explicit conceptualization of 
usage, as well as of contextual linkage required for the 
transformation. ADOI contains conceptualization-driven 
architecture to cope with knowledge allocation with 
respect to functionality of the UI and the FC, as well as 
the contextual linkage between them. As a result, ADOI 
realizes the role of complement by providing a 
development support with the integration of different 
design approaches. 

We identify first which concepts in the two worlds 
are required for specifying relationships between the 
users ’ goals and the system functionality in section 2. 

We introduce our approach and demonstrate an example 
in section 3. Finally in section 4 we conclude our work 
by indicating the work in the future. 

2. CONCEPTUAL MODELS FOR 
CONTEXTUAL DEVELOPMENT 

A conceptual model is a collection of concepts and their 
relationships, which embodies people’s shared 
understanding for some aspect with respect to some 
domain of interest. Traditionally, the purpose of 
conceptual modelling is to generate a specification of the 
envisioned system. Recently the notion of conceptual 
modelling has been augmented for specifying the 
relationships between the system and the environment in 
which the system is to be used. Although there may be 
alternatives, the basic types of conceptual models in use 
for contextual development can be classified into the 
following categories: 

• Task model. A task model is a specification of 
tasks to be performed with the system and the 
relationships among these tasks. Task models can, for 
example, be hierarchical task models, traditional use 
cases, or goal-based use cases. 

• Domain model. A domain model defines a 
collection of objects in the environment that the system 
will be used in and their relationships. A domain model 
specifies information to be maintained by the system. It 
usually contains real things in the environment. 
Conceptual objects in the users’ minds may be included 
into the domain model, depending on which perspective 
is in use. 

• Role model. A role specifies a typical user who 
performs tasks with the system and, hence, can be 
characterized as a set of tasks. A role model represents 
the different types of roles and their classification.  

In this section, we discuss the characteristics of task 
models because of their crucial role for contextual 
development and argue why the contextual linkage 
between the users’ concepts and domain concepts is 
required for contextual development. 

2.1. Declarative models  

A task can be conceived as an input-output relation over 
objects; task applications specify state transitions. There 
are two different approaches to modelling the semantics 
of tasks: 

• Declarative semantics. With declarative 
semantics, a task is given meaning by mapping it to 
well-known concepts. The task can be well understood 
without reference to any specific computational 
procedure for its realization. 

• Procedural semantics. In procedural way, a task 
is given meaning by referencing a real or virtual 



procedure that specifies the state transitions. To obtain 
the meaning is to simply execute the procedure and 
observe the outcome. 

There is another dimension of perspective relevant to 
a declarative task model with respect to contextual 
development, that is, to whom a task can be well 
understood: 

• User-centred. A task is defined with the users’ 
concepts. However, it may be not well defined for the 
developers because it states neither what something does 
in the developers’ language, nor how something is done. 
For instance, ‘1 + 1’ is the simplest task that has a well-
understood meaning ‘2’ for people, but it must map to 
the developers’ concepts before it can be used for design. 
The mapping creates contextual relationships from the 
users’ concepts to the developers’ concepts. 

• System-centred. A task is specified with the 
developers’ concepts. For example, ‘+ (1, 1)’ is well 
understood in the LISP domain, but people outside the 
domain must perform a learning procedure or really 
execute the expression with a LISP environment before 
they can understand the meaning of the expression. 

The rationale of contextual development requires a 
combination of both perspectives. On the one hand, it 
requires a user’s perspective for explicating the meaning 
of a user task with the users’ concepts. On the other 
hand, it also requires a system perspective for 
explicating the meaning of a user task with the 
developers’ concepts. It implies that objects in the 
information space with respect to the universe of 
discourse have to be partitioned into two sub-types: 
conceptual objects in the usage world, and domain 
objects in traditional sense in the subject world. Domain 
objects in this sense represent the export state of the 
conceptual objects in concepts meaningful to the 
developers. However, current approaches do not make 
the partition. For example, domain models in HCI 
usually contain the both sub-types of objects, whereas 
object-oriented approaches do not acknowledge the 
existence of conceptual objects. 

As shown in Fig. 1, a user task defines a mapping 
relation over conceptual objects, whereas a contextual 
link specifies a collection of mapping relations, or 
semantic operations, from conceptual objects to domain 
objects. These semantic operations interpret the user task 
over the domain objects. As a result, the semantics of 

user tasks are declarative both for the users and the 
developers. 

In remainder of this section, we look at that what is 
still lacking in current task models. 

2.2. Task models 

The meaning of task  has been specified in somewhat 
different senses in HCI and RE, resulting in some 
confusion. For example, approaches in HCI, e.g. [1], 
[13], define a task as an activity performed to achieve a 
goal. It implies that a task is a fixed method or a 
procedure to be undertaken in order to obtain the goal or 
the meaning of the task.  

In goal-based RE, a goal is sometimes defined as 
something that some stakeholder hopes to achieve in the 
future [18]. However, it is still not articulate who is the 
stakeholder and what is something. 

In this paper, we describe a goal as a state of 
conceptual objects that a user wishes to achieve in the 
future. Hence, the meaning of the corresponding task can 
be mapped to the state. In this way, we can discuss tasks 
more abstractly without becoming bogged down to 
implementation details by dealing with state transitions. 

How to describe a task specification relies on 
different perspectives. In HCI, a task is usually modelled 
as a hierarchical structure that reifies task/subtask 
decomposition down to specific actions that a user may 
perform over conceptual and domain objects through the 
UI of the system. Therefore, user-task models provide 
two types of information about tasks: structural and 
procedural  [14]. That is, a contextual link in Fig. 1 is 
given meaning by reference to a context -sensitive 
structure rather than a declarative specification for the 
structure. Furthermore, it is still difficult to discover the 
goal of the task unless the goal is already known. 
Hierarchical task models may be appropriate for the 
design of components of the UI of the system, which 
should come later when the architecture of the system 
has been determined.  

Some approaches in HCI, e.g. [15], [16], use a 
hierarchical task model as an essential component of 
their ontology for the specification of the system. 
However, in our view their ontology might not be 
qualified as real ontology that defines a formal, explicit 
specification of a shared conceptualization [17]. 

Use-case models [19] have been widely used as task 
models in object-oriented approaches. The role of use 
cases can be seen as two-fold: discovering the tasks 
and/or goals, and determining about the relationships 
from tasks to domain objects. A use case in essence can 
be described as a process of interactions performed in 
turn by an actor (a human, or an active agent) and the 

User Tasks
Conceptual

Objects
Domain
Objects

Contextual links

 
Figure 1.  The relationship between the two 
perspectives 



envisioned system. Use-case models can be conceived as 
declarative specifications since the meanings of the 
actions performed by the actor are given by the 
corresponding system responses. It is generally agreed 
that the Jacobson’s use-case model [20] is system-
centred because the actions and their meanings are 
described using domain concepts. In fact, a use-case 
model in this situation corresponds to a state machine 
over domain objects [21, 22]: an action through the UI 
produces an event, which in turn triggers an operation 
performed for the purpose of state transition. As a result, 
the connection between the actions and corresponding 
system operations is linear and declarative from a 
developer’s perspective. 

To provide a user-centred perspective, some 
approaches have proposed goal-based use-case models, 
e.g. [9], [23]. Unlike Jacobson’s use-case model, goal-
based models can be qualified as user-centred since use 
cases are described around goals with respect to users’ 
concepts. In principle, a use case in this situation 
specifies a task over the conceptual objects. However, 
the conceptual objects actually are not modelled in 
formal way in those approaches, implying that the nature 
of use-case model as a state machine over domain 
objects is not changed. This violates the linear property 
of state machine since the relation between a user task 
and corresponding domain objects is in general non-
linear, as we have seen in the hierarchical task model. As 
a consequence, the (domain) features cross multiple use 
cases, making the tracking more complicated [9]. The 
reason is that contextual links are still lacking in the 
goal-based models. 

In this paper, we model conceptual objects, and 
domain objects formally, both of which specify the 
information maintained by the system. On the one hand, 
the two kinds of objects model knowledge about usage 
of the system and about domain features, respectively. 
On the other hand, conceptual objects represent short-
term information relevant to usage, whereas domain 
objects represent long-term information related to 
domain features in terms of an architectural view. We 
also use semantic mappings from the conceptual objects 
to the domain objects, which links the two sets of objects 
contextually.  

We use goal-based use cases to discover tasks and 
goals of the tasks, in which each of user inputs and 
system outputs is specified over the conceptual objects. 
As a result, the task application could be conceived of as 
a transition from the current state of conceptual objects 
to the goal state. Actually it is the application of the 
semantic mappings over domain objects, which makes 
the transition.  

3. THE ADOI APPROACH 

The ADOI (Another Dimension of Information) 
approach is aimed at supporting the process of 
contextual development based on the underlying 
principle of UCD – from conceptual models to 
architectural model to reify the users’ goals in a 
declarative way. The meaning of ADOI is two-fold: 
modelling conceptual objects and domain objects on the 
one hand, and making functional assumptions over the 
components of architecture for the two sub-types of 
objects on the other hand. The approach does not contain 
any assumptions for the implementation methods. 

As shown in Fig. 2, the ADOI approach provides a 
framework comprising the models for the understanding 
and representation of the corresponding worlds that the 
models are assumed to support. The purpose of the 
framework is to explicate the relationships among the 
models under the assumptions over each component of 
the models, which we will discuss in the remainder of 
the section. The arrows in Fig. 2 show the dependency 
relationships between the models, e.g. both the 
conceptual model and the task model rely on role model. 
It means that a model has to be changed if a model it 
depends on is changed.  

Contextual development for interactive systems with 
ADOI can be seen as a two-stage process: 

• Conceptual modelling includes creating models 
(role model, task model and conceptual model) in the 
usage world, the domain model in the subject world 
based on the understanding of the users and of the 
problem domain, and the contextual link model for the 
connection between the two worlds.  

• Architectural modelling produces an 
architectural model, in which concepts and their 
relationships in the conceptual models are assigned to or 
realized by the components of the architectural model. 

ADOI does not prescribe any particular methods for 
the system design. Any design methods can be used for 
the design of components if they are considered to be 
appropriate. 

This section discusses concepts and relationships 

The system

The subject world

The usage world

Role model

Task model

Contextual
Link model

Domain
Object model

Conceptual
Object model

Architectural
Model

 
 

Figure 2.  The ADOI framework of models 



among these concepts modelled by the different models. 
We demonstrate the usage of these models with a simple, 
well-known hotel reservation example [24, 25, 26].  

3.1. Role model 

Conceptual modelling for the usage world means 
understanding and modelling the people who are 
involved in affairs. For understanding the usage, the 
roles that users play can be more important than the 
users themselves [23]. A human user plays as a role (e.g. 
a customer, or a clerk) as the user has a certain goal or a 
collection of goals to use the system. A role represents a 
collection of common features abstracted from actual 
users who might interact with the system with similar 
goals. Unlike an active object, the characteristics of a 
role rely on its psychological aspects. A role can have 
attributes that specify knowledge, skill, experience, 
education, training, responsibility, etc. A role can also 
have behaviour when interacting with the system. As a 
result, a role is not only a meaningful collection of tasks 
performed by one or more agent [15]. It is also related to 
a set of conceptual objects that reflect the role’s 
understanding of the usage. For instance, ‘take photo’ is 
a common task for any person acting as a photographer, 
but a beginner typically has a different set of conceptual 
objects from a professional when interacting with a 
camera. This implies that a task can be performed in 
different ways in terms of conceptual objects to achieve 
a goal.  

A role model in ADOI is composed of a collection of 
roles and the relationships between them. A role is a 
collection of goals that represent the state the person 
wishes to achieve [27]. Roles can be involved in a type 
hierarchy that specifies the generalization of goals, e.g. 
the beginner and the professional in the above example 
can be generalized as a photographer. Roles can have 
associations that represent semantic relationships, such 
as cooperation, between roles.  

 Fig. 3 illustrates the main artefact of the role model 
for the hotel reservation example. It shows the roles 
involved in the affair of reservation. The association 
between the customer and the clerk is many to one, 

implying the clerk can serve multiple customers, but a 
customer is assigned to one clerk. 

3.2. Task model 

 A significant activity in conceptual modelling is to 
analyse, identify and specify tasks to be performed by 
roles with the envisioned system. Task modelling for 
contextual development requires this activity to be 
centred on the users’ goals from a user’s perspective, and 
later the meaning of the modelled tasks is interpreted 
from a developer’s perspective, both in a declarative 
way. The accomplishment of this activity relies on a 
shared understanding between the users and developers. 
In our vision such a consensus does not mean that a 
unified task model could be used to describe knowledge 
about tasks in the usage world with intertwining explicit 
and implicit references to the domain features in the 
subject world.  

In ADOI, a distinguishable characteristic is to 
separate the description of tasks from their reference to 
domain features by introducing a task model and a 
contextual link model. Achieving the separation depends 
on our view about what is a task. We assume the state of 
the envisioned system is determined in terms of 
conceptual objects, or psychological variables [27], 
rather than of domain objects. The role of contextual 
links is to map the state of conceptual objects to domain 
objects. As a consequence, tasks are performed over 
conceptual objects rather than domain objects.  

In ADOI, a task is defined as an input-output relation 
over conceptual objects. A goal is described as a state of 
conceptual objects that a role wishes to be achieved by 
the task and, thus, the result of a task can be mapped to 
the goal.  

 ADOI uses a use-case model to describe tasks and 
their relationships. As we mentioned earlier, use-case 
models suffer from a problem with the level-of-
abstraction, that is, the more abstract a use case is, the 
further the distance is between the use case and the 
relevant state of the domain objects. Such problem will 
not appear in our case according to the task definition. 
Unlike many use-case models that make more extensions 
and/or constraints on the definition of a use case, we 
only add or replace several (bold) words to the original 
UML definition [19]: 

The specification of a sequence of actions, including 
variants over conceptual objects (instead of nothing 
here), that a system (or other entity) can perform, 
interacting with roles (instead of the original “actors”) 
of the system. 

In this way, we can use the original use-case model 
without any extensions and/or constraints, but on a 

Role

* 1

Customer Clerk
 

 
Figure 3. A role model for the example 
application 

 



consistent level towards the users’ goals with respect to 
the users’ concepts. It is notable that user actions are 
given meaning by reference to the corresponding system 
actions, or responses. 

A use case in ADOI includes a name specifying a 
task, and a collection of attributers, such as goal, pre-
/post-condition, significance, frequency, etc. A use case 
can be in a generalization hierarchy. Use cases can have 
‘include’ and  ‘extend’ relationships [19].  

Fig. 4 and Fig. 5 illustrate the main artefacts of the 
task model for the hotel reservation example. Fig. 4 
shows the use-case diagram that specifies the tasks and 
their relationships with the roles. Fig. 5 shows an activity 
diagram detailing the ‘make reservation’ use case.  
Verbs in Fig. 5 are used for specifying the customer and 
the clerk tasks, and the system responses. Nouns in Fig. 
5 are used for specifying conceptual objects. It is easy to 
see that the use case is described from a user’s 
perspective, and maintain a linear relationship over the 
conceptual objects. The system responses in Fig. 5 
provide then meanings for the clerk’s tasks from a user’s 
perspective and, hence, have to map to domain features, 
which we will discuss in section 3.5. 

3.3. Conceptual object model 

In ADOI a conceptual object model is similar to a 
normal domain model in form. The conceptual object 
model contains objects and relationships among the 
objects. A conceptual object is an intangible thing in a 
user’s mind and, hence, belongs to the usage world. 
Conceptual objects are often closely related to user tasks. 
As a result, modelling tasks and discovering conceptual 
objects is an iterative process. Conceptual objects should 
be described in terms meaningful to the users and 
delivered in their entirety.  

Fig. 6 shows a class diagram for the ‘make 
reservation’ use case. The conceptual model contains 
classes that are significant from a user’s perspective of 
the task. Some of these classes may not be realized in the 
system design. For example, the ‘customer’ class is 
important from a clerk’s perspective, but it may be an 
attribute of the class ‘reservation’ in the system design. 

This is similar to the relationship between a domain 
model and the system design.  

Comparing the conceptual object model in Fig. 6 
with the domain object model in Fig. 7, one can find that 
they are different to a great extent. Although some 
classes may have the same names, the attributes of them 
are usually different. For example, the ‘reservation’ class 
in fig. 6 specifies information about the current 
customer, but the  ‘reservation’ class in fig. 7 maintains a 
historical list of all customers who have made 
reservations. 

In general, conceptual objects represent a user’s 
understanding of the usage. Provision of task 
specification with conceptual objects is important for the 
users to understand and agree on their tasks. Conceptual 
objects are often aggregations from real things in the 
domain by reorganizing information provided by these 
things. As a result, users do not want the raw 
information, but rather they need the information to be 
restructured and summarized [28]. However, it is 
difficult to discover the information for the restructuring 
and reorganization using an inside-out perspective, as 
proposed by [6]. Modelling conceptual objects certainly 
provides an effective way for this. On the other hand, 
conceptual objects help UI designers to concentrate on 
towards goal-based presentation, and to prevent domain 
knowledge from being leaked into the UI of the system. 

3.4. Domain object model 

Customer Clerk

Make reservation

Check in

Check out

 
 
Figure 4. A use-case model for the representation of 
user tasks 
 

Present request

Ask availability

Check availability

Request preference

No availability

Present preference

Ask preference

Check preference

No preference

Provide preference

Make reservation

Confirm reservation

Get confirmation

Customer Clerk System

 
 
Figure 5. A workflow for the ‘make reservation’ task 



A domain model represents the understanding of 
domain-imposed requirements from a developer’s 
perspective. In ADOI, A  domain model does not contain 
objects explicitly related to user tasks. In other words, 
the domain model comprises pure objects in the subject 
world. Fig. 7 shows the domain model in the example 
application.  

The benefit of using a pure domain model is to reuse 
and share it among different applications in the same 
domain since these applications can be envisioned for 
different requirements. In other words, it facilitates the 
development of  domain ontology [7, 12, 17] for the 
purpose of interoperability between the applications.  

3.5. Contextual link model 

It is important to understand and identify existing 
relationships from the usage world to the subject world 
for tracing domain features. This means that the 
meanings or goals of user tasks, that is, the specified 
tasks for the envisioned system in the use cases have to 
map to corresponding domain features.  

ADOI attempts to specify the relationships in a 
declarative way by a contextual link model. A contextual 
link maps a system task defined on the conceptual 
objects to a collection of semantic operations defined on 
the domain objects. The role of contextual links can be 

two-fold: 
• Tracing domain objects that are relevant to 

tasks of the system 
• Identifying operations over domain objects that 

may be performed by the tasks  
In this moment, we do not consider how a task 

invokes corresponding operations (synchronous, or 
asynchronous) and how the operations will be performed 
(sequential, or concurrent). These “how” questions are 
delayed until the design time.  

For example, Fig. 8 specifies a contextual link, which 
map the ‘check availability’ task to three operations. The 
contextual link identifies not only the operations, but 
also a ‘period’ object that does not exist in the domain 
model. In fact, the contextual link model can be used as 
a means for reasoning about why a domain object is 
required, and what are its attributes.  

3.6. Architectural model   

More than a bridge between requirements and 
implementation, the role of architectural model for 
contextual development is to act as a means to deliver 
knowledge about problem-solving goals to the system 
design, as we mentioned earlier. Up to now we have 
conceptually modelled the knowledge both from a user’s 
perspective and a developer’s perspective. In the 
remainder of this section, we architect a system’s 
structure in terms of the knowledge.  

In ADOI, a component is modelled by the 
assumption over its functionality, which realizes a piece 
of the knowledge in declarative way. This means that the 
component is denoted with respect to what can be done 
with it rather than to how the component can be 
implemented.  

Fig. 9 presents the assumed knowledge space 
realized by the ADOI architectural model. The space is 
composed of two subspaces: 

• Functional space. Functional space represents 
knowledge about the control and process of domain-
specific information, and about the other non-human 
active agents. 

Customer

Availability

Reservation Preference

depends onch
ec

ks
  m

akes

determines

has

de
te

rm
ine

s

 
 
Figure 6. A conceptual object model for the ‘make 
reservation’ task 

 

Check availability

Calculate period

Check room

Check reservation
 

 
Figure 8. A contextual link model for the ‘Check 
availability’  
 

Hotel Customer

1 0..*

+

Room

1

1..*
+

Reservation

1 1

Bill

1 1..*

1..*

1..*

 
Figure 7.  A domain object model for the example 
application (adopted from [25]) 
 



• Interaction space. Interaction space covers 
knowledge about the presentation and control of human-
specific concepts. 

The dimensions in the space are independent of each 
other. But there is also one shared dimension between 
the two subspaces. For example, the behaviour 
dimension is not depended on the dialogue dimension. 
This is a necessary condition for a declarative 
specification. For example, if a shared information space 
is used both for the functional knowledge and the 
interaction knowledge, as proposed by [25], the dialogue 
cannot be independent of the behaviour and, thus, the 
behaviour dimension has to be reified in terms of the 
particular characteristics of the dialogue.  

The shared dimension in the two subspaces is the 
concept dimension of the interaction space and the 
behaviour dimension of the functional space. The 
dimension connects the two subspaces together by 
means of the process of human-specific concepts 
through domain-specific information.  

This knowledge space is a contextual extension to 
original UML architectural framework specified by the 
UML analysis profile [19].  In fact, the UML profile 
only contains the functional space in the Fig. 9, in which 
the interface dimension is used to cope with the 
knowledge about both non-human and human agents, 
reflecting a system-centred perspective. 

As a res ult, the components defined in ADOI 
architectural model are extended from UML analysis 
profile. ADOI architectural model defines six 
stereotypical classes: 

• «Task-boundary» classes. A task-boundary 
class is assigned to or realizes knowledge about a user as 
a role with respect to both functional and non-functional 
aspects. Therefore, it must facilitate a user to create user 
conceptual model [27] that represents the user’s 
understanding of a system. Task-boundary classes model 
interaction between the system and its human actors. 
They represent interaction contents that reflect the 
presentation of the user’s concepts (conceptual objects), 

and that request information from the user, rather than 
abstractions of physical user-interface components [25]. 

• «Task-control» classes. A task-control class is 
assigned to or realizes knowledge about user tasks as 
multiple mapping relations with respect to functional 
respects. Task-control classes often cope with complex 
task-control logic related to use cases. They are 
responsible for sequencing the interaction between the 
user and the system on the task level, and for transferring 
information between task-boundary and system-entities 
via task-entities. They often encapsulate special 
behaviour related to user task, so that it isolates change 
of the structure of dialogue.  

• «Task-entity» classes. A task-entity class is 
assigned to or realizes knowledge about a conceptual 
object particular for the context of a task with respect to 
non-functional aspects. Task-entity classes are 
responsible for the interoperability between task-control 
and the system-control classes, such as temporal 
coordination and data exchange. They represent short-
term information, and work as a working memory that 
specifies the state of the system in terms meaningful of 
the users and independent of the presentation of the 
system. They often encapsulate information matching 
user’s mental representation and, therefore, they isolate 
change in data structure of the system and the user 
interface. 

• «System-control» classes. A system-control 
class is assigned to or realizes knowledge about the 
contextual relationships between user tasks and system 
tasks. System-control classes often cope with complex 
control logic related to domain data. They often 
encapsulate special behaviour related to system tasks, so 
that they isolate change in the structure of data. 

• «System-entity» classes. A system-entity class 
is assigned to or realizes knowledge about a domain 
model as a collection of entities with respect to the 
functional aspects. System-entity classes represent 
information that is long-lived and often persistent. Their 
role is much similar to the ‘entity class’ in the UML 
analysis profile [19]. 

• «System-interface» classes. A system-interface 
class is assigned to or realizes knowledge about the 
relationships between the system and its environment. 
Their role is much similar to the ‘interface-class’ in the 
UML analysis profile [19]. 

Fig. 10 demonstrates an artefact of architectural 
modelling for the ‘make reservation’ use case in terms of 
knowledge in the conceptual models built for the 
example application. Objects in Fig. 10 are specialized 
from the stereotypical classes, e.g. the ‘Availability’ 
object is an instance of the task-entity class that realizes 
the corresponding user’s concept, whereas the 

Presentation

DialogueInterface

Information

Behaviour Concepts

Functional space Interaction space
 

Figure 9. The ADOI knowledge space 



‘Availability’ object is assigned to the functionality to 
present the ‘Availability’.  

Task-entity objects in Fig. 10, in fact, act as the 
mediator between the UI and the FC. They are used not 
only to map users’ concepts between actual users and the 
UI, but also to implement the contextual links between 
task-control objects and system-entity objects. The 
mediator works also as a short-term memory for domain-
knowledge delegation. For example, the ‘Availability’ 
object in fig. 10 stores information related to the 
possibilities of the preference. As a result, the 
‘Availability’ object is first checked for the preparation 
of the preference, avoiding the repetition of work that 
might be time -consuming on the domain level.  

Different design methods are assumed for the 
purpose of implementation. For example, a task-
boundary object represents a smaller aggregation of 
tasks. In order to deliver a design for the presentation 
and dialogue control of interaction, the visual design of 
task-boundary objects can be reified using a hierarchical 
task model. 

4. CONCLUSIONS 

User-centred design requires generic representation of 
usage for the system design rather than problem-solving 
specification for the component design. In order to 
achieve this point conceptualization performed for a 
particular design has to be generalized for the 
understanding and representation of usage of the system. 
The generalization is provided with the integration of 
declarative models, which allows an integrated process 
of development with a generic, open architecture. 
Models in ADOI have been built in this way. Therefore, 
ADOI overcomes some limitations of current approaches 
that suffer from problems of level-o f-abstraction. Static 
and explicit concepts defined in those models allow a 
declarative specification for the usage, and the 
integration of different perspectives through declarative 
linkage. A novel conceptualization-driven architecture is 

provided with knowledge allocation with respect to 
functionality and contextual linkage. Consequently, a 
seamless development with the integration of different 
design approaches is systematically supported.  

 The further development of ADOI includes an 
application ontology that integrates all concepts in the 
models with a taxonomic structure and concerns 
relations between the concepts in the models and 
between the models with axiom. The ontology increases 
a shared understanding between people and reuse of 
conceptualization for similar applications in the same 
domain on the one hand. On the other hand, the ontology 
drives automatic representation of system architecture 
because of its formal, explicit specification.  

REFERENCES 

1. Maguire, M.: Methods to support human-centred 
design. Int. J. Human-Computer Studies, 55 (2001), 587- 
634 
2. Lamsweerde, A.: Requirements engineering in the 
year 00: A research perspective. In the proceedings of 
ACM ICSE 2000, (2000), 5-19 
3. Hudson, W: Towards unified models in user-centred 
and object-oriented design. In: M. van Harmelen (eds.): 
Object Modeling and User Interface Design, Addison-
Wesley (2000) 
4. ISO/TC159: Human-centred design process for 
interactive systems. Report ISO 13407: 1999. Geneva, 
Switze rland (1999) 
5. Garlan, D.: Software architecture: A roadmap. In: The 
proceedings of ACM future of software engineering 
(2000), 93-101 
6. Coutaz, J. and Balbo, S.: Applications: A dimension 
space for user interface management systems. In: The 
proceedings of ACM CHI’91, (1991) 27-32 
7. Rolland, C. and Prakash, N.: From conceptual 
modelling to requirements engineering. Annals of 
Software Engineering, 10(2000) 151-176 
8. Jarke, M. Pohl, K. and Rolland, C.: Establishing 
visions in context: towards a model of requirements 
processes, Proc. 12th Intl. Conf. Information Systems, 
Orlando, Fl, (1993) 
9. A. Cockburn, Structuring Use Cases with Goals, 
JOOP/ROAD 10(5) Sep’97 and 10(7) Nov’97. 
11. Juristo, N., Moreno A. M.: Introductory paper: 
reflections on conceptual modelling, Data & Knowledge 
Engineering 33 (2000) 
12. Studer, M. Benjamins, V. R., and Fensel Dieter: 
Knowledge Engineering: principles and methods. Data 
& Knowledge Engineering 25 (1998) 161- 197 
13. Paterno, F.: Model-based design and evaluation of 
interactive application, Springer Verlag, (1999) 

Check
Calc

ula
te

Check

Create
Regis ter

Preference browser

Availability browser

Reservation editor

Check

Availability

Check

Make

Preference

Reservation

Period

Room

Reservation

Customer

Stay

Reg
ist

er

Handler

Maker

 
 
Figure 10. An analysis model for the ‘make reservation’ use 
case  
 



14. Puerta, A. and Einsenstein, J.: Towards a general 
computational framework for model-based interface 
development systems, ACM CHI’97, (1997) 
15. Welie, M. et al: An ontology for task world models, 
proceedings of DSV-IS’98, Spriger Verlag, (1998) 57-70 
16. Stary, C.: Contextual prototyping of user interfaces, 
proceedings of ACM Dis’00, (2000) 388-395 
17. Gruber, T.R.: A translation approach to portable 
ontology specification. Knowledge Acquisition, 6(2): 
(1993) 199-221 
18. Plihon, V. et al: A reuse-oriented approach for the 
construction of scenario based method, Proceedings of 
ICSP’98, (1998) 14-17 
19. G. Booch, et al. “The Unified Modelling Language 
User Guide”, Reading, MA: Addison-Wesley, 1999. 
20. I. Jacobson, et al: Object-Oriented Software 
Engineering: A Use Case Driven Approach, Addison-
Wesley, (1992) 
21. Hsia, P. et al:  Formal approach to scenario analysis, 
IEEE Software, 3 (1994) 33-41 
22. Glinz, M: An integrated formal model of scenarios 
based on statecharts, Proceedings of ESEC’95, (1995) 
254-271 
23. Constantine, L.: Use cases for essential modeling 
user interfaces, ACM interaction, 4 (1995) 34-46 
24. Robert, D. et al: Designing for the user with OVID, 
Macmillan, Indianapolis, Ind. (1998) 
25. Nunes, N. and Cunha, J. F.: Wisdom: A software 
engineering method for small software development 
companies, IEEE Software, September/October, (2000) 
113-119 
26. Collins-Cope, M.: The RSI approach to use case 
analysis, Proceedings of TOOLS 29, (1999)  
27. Norman, D.: Cognitive engineering, In: Norman, D. 
and Draper, S (eds.): User centered system design, 
Lawrence Erlbaum Associates, Hillsdale, NJ. (1986) 31-
61 
28. Szekely, P.: Retrospective and challenges for model-
based interface development. In the proceedings of 
CADUI’96, (1996)  


