
Supporting Model-based Construction of Semantic-enabled Web Applications

Fuchs M., Niederée C., Hemmje M., Neuhold E.-J.
Fraunhofer Institute IPSI - 64293 Darmstadt, Germany

{fuchs, niederee, hemmje, neuhold}@ipsi.fhg.de

Abstract

Semantic annotation of Web content is in the core of the
current Semantic Web Activity. The operationalization of
the Semantic Web raises the challenge on how to system-
atically integrate semantic annotations into generated Web
application pages.

In this paper, we present VizCo, a tool for systematically
integrating RDF based semantically enriched application
domain models into the process of setting up dynamically
generated Web application user interfaces and supporting
their evolution. The form-based Web pages are annotated
based on the underlying domain model.

Combined with further mapping tools, VizCo is used in
our Web application development framework for coupling
the domain model views and, indirectly, the underlying ap-
plication data with other Web application components, es-
pecially with elements of the user interface. In contrast to a
direct coupling with the application data an additional se-
mantic layer is introduced. We follow a pragmatic approach
that utilizes domain information extracted from application
schemata and data as a starting point. Both the domain
model and its coupling to the data source can be manually
refined and extended. The couplings are dynamically trans-
lated into bi-directional data bindings at runtime.

1 Introduction

The usefulness of semantic annotation of Web content
has been impressively illustrated in [2]. The operational-
ization of the Semantic Web raises the question of where
this semantic annotation should come from, since, with the
vast amount of available content, a purely manual approach
is not tractable. We believe that, in addition to the anal-
ysis and semi-automatic extraction of semantic informa-
tion from structured and semi-structured content like Web
Pages, text documents, etc., valuable starting points for se-
mantic annotation can also be induced from structured in-
formation basis, i.e., data stored in databases. Considering
the percentage of dynamic Web application pages generated

from database content in today’s Web shows the potential
relevance of this source for semantic annotation.

This paper addresses the issue on how to smoothly in-
tegrate semantic annotation into Web application develop-
ment enabling the inclusion of semantic annotations into
dynamically generated Web application pages. The seman-
tic annotation is based on the underlying domain model.
The presented work can, thus, be considered as a contri-
bution towards the operationalization of the Semantic Web.

In more detail, we presentVizCo, a tool for visually
defining application specific views and flexible application
data couplings for RDF-based domain models. Combined
with other components of our model-based Web application
development framework,VizCo enables the visual definition
of couplings between a domain model and other objects of
Web application like user interface components. The do-
main model is an enriched view of the underlying applica-
tion data, which is coupled with this data. The tool takes an
RDF-based description of the domain model as an input and
produces an RDF expression describing the coupling inter-
actively defined. At Web application runtime such expres-
sion is automatically translated into a bi-directional bind-
ing with the underlying application data controlling the data
displayed in the Web pages as well as the propagation of
data modifications resulting from user interactions.

The design ofVizCo is inspired by work in the area of
visual support for query formulation [21, 1], where visual
user interaction with a graph replaces the use of a textual
query language prioritizing ease of use over full expressive
power. In our tool the graphical paradigm is applied to
a (simplified) RDF graph representation and produces do-
main model view definitions with an underlying coupling to
the application data. The interactively created domain view
definition expressions can be used by other components to
couple Web application objects like user interface elements
with the domain model and indirectly with a semantically
enriched version of the underlying application data.

The rest of the paper is structured as follows: Section 2
discusses related work in the areas of visual query support,
RDF query languages, and the model-based software devel-
opment approach. Section 3 describes the conceptual ap-

1

proach underlying theVizCo tool including an overview of
the coupling definition process, the conversion rules as well
as the representation languages for domain model views and
couplings. VizCo is part of our framework for the model-
based development and evolution of semantic-enabled Web
applications. An overview of this framework is given in sec-
tion 4 before relevant issue of the prototypical implementa-
tion of VizCo are described. The paper concludes with a
summary and with an outlook to future work.

2 Related Work

The visual definition of domain model views and cou-
plings inVizCo is closely related to work in the area of vi-
sual support for query formulation, which has a long tra-
dition going back to early approaches like QBE [21]. More
recent approaches like [1, 4, 9] use graph-oriented represen-
tations of the data schema for facilitating query formulation
as well as schema navigation and understanding. In addi-
tion, the G+ project [4], which is based on the Graphlog
query language also uses graphical representations of in-
stance data and of query results.

Most similar to the visual definition approach used in
VizCo is the tool QBD* [1]. Like QBD*, VizCo uses a
graph and an isomorphic language expression to represent
the query which is interactively constructed by the user. The
language expression is later translated into an expression of
the target query language (SQL). We also follow a two level
selection approach enabling the user to restrict the underly-
ing schema (of the domain model) to aschema of interest
before starting with the visual composition of the selection
expression, which is especially useful when working with
large schemata. In contrast to the QBD* approach, which is
based on the Entity Relationship model [3],VizCo operates
on an RDF Schema and is tailored to its property centric
data model. Furthermore, the expressions constructed with
VizCo are no queries but coupling expressions that are used
at runtime to establish bi-directional bindings.

The domain selection and coupling expressions pro-
duced byVizCo are based on an RDF query language. Cur-
rently, several proposals for RDF query languages are under
development [10, 12, 13, 19], but it is not yet clear how a
possible standard in this area will look like. So, we have
chosen one of the existing approaches as a basis, namely
RDF Query developed at IBM [11], because queries them-
selves are formulated in XML and they are based on a clear
declarative approach. Currently, we use the RDF query ex-
pressions as an exchange format for coupling expressions.
There is no ”native” RDF query engine involved, since the
query expressions are mapped to SQL queries.

VizCo is embedded within a model-based framework,
following the MVC (Model-View-Controller) approach.
Similar model-based frameworks are [17], [18], [7], [20].

Figure 1. VizCo Mapping to user interface

Mobi-D [17] is a interactive environment where declara-
tive models can be connected (see [16]). Mobi-D distin-
guishes two different kinds of models, the abstract and the
concrete models. All combinations of mapping are pos-
sible between abstract and concrete. InMecano [18], a
model-based user interface development environment is in-
troduced, which provides a tool for creating domain mod-
els. Based on this model,high-level dialogs (e.g. workflow
and navigation structure of windows) as well aslow-level
dialogs (one step within the high-level dialog e.g. form in-
put field, button) can be generated and later customized. In
contrast to our approach the domain model has to be con-
structed manually and is not directly coupled to existing
application data.SUIMS, another model-based user inter-
face construction approach described in [7] is based on the
so-calledART Schemata where a user interface model is
composed from objects, actions, parameter, attributes and
their types, pre-conditions, and post-conditions as well as
the corresponding relations between them. These schemata
can be instantiated with different parameters resulting in the
creation of different types of user interfaces. To build up the
schemata, a highly skilled programmer is needed.

3 The VizCo Coupling Definition Process

3.1 Example Usage Scenario

Coupling the application data with the domain model is,
not a value by its own. It has to be considered as part of
a larger scenario, where domain model objects are used in
a Web application and the coupling of the domain model
with the underlying application data assures consistent data
management. We, therefore, consider an example usage
scenario for motivating our approach:VizCo is integrated
into the Form Dialog Manager (FDM), a central compo-
nent of our Web application authoring tools suite. The
FDM enables the composition of form-based Web appli-

S1 : Database
Schema

S2 : RDF
Schema

M1 : Schema Map

G1 : RDFS
Graph

(simplified)

SC1 : View Definition

History Script

Step 4
Generate RDF

Query

U1 :
Superuser

Q2 : SQL
Statement

Step 5

Convert RDF
Query to SQL

Step 1

Convert Application data
Schema to Domain

Model

Step 2
Adapt Domain

Model

Q1 : RDF
Query

Create and
Display

simplified Graph

Define Coupling
expression

Step 3
VizCo

Will be used by
other components for
Coupling definition
(i.e. User Interface)

Figure 2. The“Coupling” process

cation user interfaces. It is based on XForms [5] the up-
coming W3C standard for form-based Web pages, which
follows the MVC approach by clearly separating layout as-
pects from data and control logic and is equipped with a
more powerful client interaction model.

After defining a form field with the FDM like e.g. the in-
put field “number of persons”,VizCo is called (see figure1).
VizCo exposes the domain model and enables the developer
to interactively select the parts of the domain model that are
to be coupled with the form field. An expression describing
the composed view on the domain model is integrated into
the Web page. At Web application runtime this expression
is used (in combination with session information) to fill the
form field with a value and to consistently write back the
changes made in the form field by the user.

VizCocan also be easily integrated into other compo-
nents, where a coupling with domain model objects is re-
quired, like e.g. for customizing a data analysis engine.

3.2 Overview of the Coupling Definition Process

It is the task ofVizCo to enable the definition of domain
model views that become part of coupling expressions. The
UML activity diagram in figure 2 shows the most important
steps of theVizCo coupling definition process as well as the
object flow i.e. the input and output of each activity:

Step 1: A domain model is created by automatically
converting the schema of the application data and into an
RDF Schema that represents the domain model;

Step 2: This domain model can be refined and adapted
by the user by selecting, renaming and (semantically) en-
riching the concepts and properties of the RDF Schema;

Step 3: A simplified RDF graph representation of this
domain model of interest is used as a starting point for the

definition of the domain view expression. This graph is dis-
played and the user interactively composes the domain view
expression, which is represented by a graph and by a textual
interaction history expression;

Step 4: Upon completion of the interaction, the history
expression is converted into an RDF query expression that is
used as a format for exchanging coupling expressions with
other components of the framework;

Step 5: Steps 1-4 are referring to the design time of the
system. At runtime the coupling defined at design time is
translated into a binding to the application data. This means
that query language expressions for accessing the respective
data and its manipulation language expression for modify-
ing the respective data after user interaction are generated.
As a target language we use SQL;

The automatic mappings used in the process as well as
the language used for representing the interaction history
are described in the following sections.

3.3 Schema Conversion

Step 1 of the domain coupling definition process is the
schema conversion, which generates an RDF Schema (rep-
resenting the domain model) from the database schema of
the underlying application data. For this purpose a mapping
between the relational schema of the application data and
the RDF Schema of the domain model is defined. A bijec-
tive mapping is required, since we need a coupling between
the two models, that does not only support access, but also
modification of application data via the domain model.

The mapping consists of two parts: An implicit part that
defines a set of rules to be applied for performing the map-
ping and an explicit part, which stores information created
during the generation and refinement of the RDF Schema
and reuses them when the coupling is exploited at runtime.

For defining the mapping we need a functionf smap that
takes an relational database schema as an input and creates
an RDF schema as an output and the inverse functiongsmap.

On a closer look, there are three types of entities in the
relational schema that have to be taken into account for the
mapping: The tables themselves, the columns of the ta-
bles and the relations between tables encoded into foreign
key/primary key value pairs. Currently, we are not consid-
ering additional constraints (beyond primary key and ref-
erential integrity) in our mapping. For the definition of the
mapping we assume that each of these entities is represented
by a tuple (see definition D1): Each table is represented by
its name and its primary key, each column, besides the ones
representing foreign keys, is represented by its name, its
type and the table it is associated with, and each relation is
represented by the name of the table containing the foreign
key, the name of the foreign key and the name of the table
that the foreign key refers to (primary key table).

Definition D1:

table :=
〈

<tableName>
<primaryKey>

〉
,

column :=

〈
<columnName>
<columnType>
<tableName>

〉
,

relation :=

〈
<foreignKeyT ab>

<foreignKey>
<primaryKeyT ab>

〉
The name of the table (<tableName>) is unique within

the database and will be considered as an “identifier” for
the database table.primaryKey consists of one or more
columns. The pair <columnName>.<tableName> is unique
within the database and will be considered as an “identifier”
for the column; <columnType> represents the datatype of
the column. <foreignkeytab> and <primarykeytab> are the
names of the tables where the <foreignkey> and the referred
<primarykey>, respectively, are located.

Using this representation the relational schema of the ap-
plication dataSDB can be represented by the setMtab of all
tables, the setMcol of all columns, and the setMrel of all
relations. This results in the following definition for the do-
main of our mapping functionfsmap:
Definition D2: D(fsmap) := SDB = (Mtab, Mcol, Mrel).

In the RDF schema there are two type of entities: RDF
classes and RDF properties. Furthermore, we distinguish
RDF properties that use literals as a range from those who
have another class as a range. The second group of proper-
ties represents a relationship between two RDF classes. We
call it a relationship property (relproperty). Each of these
entities is represented by a tuple (see definition D3).

Definition D3: class :=
〈

<URI>
<label>

〉
, prop :=

〈
<URI>
<label>

<domain>
<range>

〉
,

relprop :=

〈
<URI>
<label>

<domain>
<range>

〉

Each of the RDF Schema elements contains a URI (Uni-
form Resource Identifier) as global identifier and a label as
human readable identifier. Properties contain the reference
to the domain and range of the property as implied by the
property-centric RDF data model.

fsmap can now be summarized as follows: Tables are
mapped to RDF classes, columns in the tables are mapped
to properties and the relations are mapped to RDF relation
properties. In more detail, three functionsf tab, fcol, and
frel are defined.

The function for mapping a table to an RDF class mainly
consist of the application of two naming functionsID class

andIDclassLabel that encode conventions for the creation of
the RDF class URI and the class label from the table name.
Definition D4:

ftab(table) = ftab

(〈
<tableName>

<primaryKey>

〉)
:=〈

<IDclass(tableName)>
<IDclassLabel(tableName)>

〉

Mapping Type Database Schema Element RDF Schema Element
table <->class course http://www.example.de/DM#course
column <-> property course.title http://www.example.de/DM#course_title
relation <-> relproperty course.domainIDREF http://www.example.de/DM#courseTOdomainREL
table <->class domain http://www.example.de/DM#domain
column <-> property domain.name http://www.example.de/DM#domain_name
table <->class person http://www.example.de/DM#person
column <-> property person.name http://www.example.de/DM#person_name
table <->class student http://www.example.de/DM#course
column <-> property student.mn http://www.example.de/DM#course
relation <-> relproperty student.personIDREF http://www.example.de/DM#course

Table 1. Stored name mappings (example)

The generated URIs and labels of the classes are stored
together with the associated table names as part of the map-
ping information (explicit part of the mapping). This is nec-
essary, because the user may manually adapt the labels and
URIs of RDF classes in the domain model. Table 1 shows
an example of a name mapping table.

A separate RDF property has to be created for each table
column. So, for each column of each table the function
fcol creates the respective RDF property. This mapping is
performed for all columns that are not part of a foreign key.
In analogy to the class mapping the URI and the label of
the RDF property are created by the functionsIDprop and
IDpropLabel, respectively.

Definition D5: fcol(column) = fcol

(〈
<columnName>
<columnType>
<tableName>

〉)
:=

〈
<IDprop(columnName)>

<IDpropLabel(columnName)>
<IDclass(tableName)>

<converT ype(columnT ype)>

〉

For each relation represented in the schemaSDB a rela-
tion property has to be created. This relation property takes
the class associated with the table containing the foreign
key as the domain of the property and the class associated
with the table containing the primary key as range of the
property. The naming functionIDclass is used to create the
URIs referring to the respective classes. The function con-
vert type converts the application data types to the types of
the domain model. Currently, we are mapping all types to
the Literal class of RDF. In the next version typed literals
based on the type system of XML Schema will be used.
Definition D6: frel(rel) = frel

(〈
<foreignKey>

<foreignKeyT ab>
<primaryKeyT ab>

〉)
:=

〈
<IDprop(foreignKey)>

<IDpropLabel(foreignKey)>
<IDclass(foreignKeyT ab)>
<IDclass(primaryKeyT ab)>

〉

The application of the three functions to all the tables,
columns and relations of the application schema, respec-
tively, results in the RDF schemaSRDF that consists of the
setMclass of RDF classes and the setsMprop of RDF prop-
erties with an literal as range andMrelprop of RDF proper-
ties with a class as range (see Definitions D7 and D8).
Definition D7:

Mclass =

⋃
t ∈ Mtab

ftab(t)∧ Mprop =

⋃
c ∈ Mcol

fcol(c) ∧ Mrelprop =⋃
r ∈ Mrel

frel(r)

Definition D8:

SRDF = (Mclass, Mprop, Mrelprop)

Summarizing all the definitions and considerations the
mapping functionfsmap is defined as follows:
Definition D9:

�fsmap(SDB) = �fsmap

(〈
Mtab
Mcol
Mrel

〉)
=

〈
ftab(Mtab)
fcol(Mcol)
frel(Mrel)

〉
=〈

Mclass
Mprop

Mrelprop

〉
Correspondingly, the inverse functiongsmap (= f−1

smap)
for mapping elements of the created RDF schema back to
the relational schema is defined. Note, thatgsmap is tai-
lored to the generated RDF schemata. It is not a general
function to map an arbitrary RDF schema to a data base
representation.

3.4 RDF Schema Element Management

In order to tailor the domain model to the “model of in-
terest” (in analogy the ”schema of interest” [1]), the frame-
work supports RDF Schema element management activities
in step 2 of the domain model view and coupling definition
process. This includes the enrichment of RDF schema el-
ements with the semantic annotation like the coupling of a
class or property in the domain model with an ontology or a
published XML vocabulary. Such enrichment is propagated
by the framework to the Web application (user) interface
and can, thus, be exploited by other applications. Further-
more, it is possible to restrict the domain model to a sub-
schema to better focus the coupling activities in the Web
application development process.

3.5 Visual Coupling Definition using VizCo

In step three of the Coupling definition process the do-
main model (an RDF graph) is represented byVizCo and the
user interactively composes a second graph that represents
the view definition. This section describes the simplified
graph representation used to visualize the RDF Schema as
well as the language that is used to represent the action his-
tory of the view graph composition.

3.5.1 Simplified RDF Graph Representation

RDF Schema (RDFS) is itself expressed in RDF and can
thus be represented as a directed labeled graph or in a se-
rialized form like e.g. RDF/XML. Since ease of use is one
of the design goals ofVizCo, a graph representation is used
in this tool to visualize the domain model as well as the do-
main view underlying the coupling definition. This second
graph is calledcoupling definition graph. In order to reduce
graph size, we introduce two simplifications into the RDF

C1
R1

A1

Class: C1
Attribute

Property: A1
Class:“Literal“

RangeDomain

C1 C2
R1

Class: C1
Relation

Property: R1
Class: C2

RangeDomain
A:

B:

C:

D:

Figure 3. RDFS graph simplifications

graph representation used inVizCo resulting into a ”Simpli-
fied RDF Graph (SRG)”:

1. In the graph representation of an RDF Schema the
relation between two classes is represented as depicted in
figure 3A: The relation itself is a first class object repre-
sented as a resource that is connected via thedomain and
the range property with the two classes. In SRG the two
arrows and the resource representing the relation property
is replaced by a single arrow as depicted in figure 3B point-
ing from the domain class to the range class. Note, that this
simplification is only possible, if the relation property R1 is
not involved in relationships to other resources.

2. Similarly, properties that relate a class to a literal are
simplified in SRG as shown in figures 3C and 3D. The re-
source representing the property A1 and the resource rep-
resenting the RDF classLiteral are replaced by the single
resource A1 for which the RDF graphs Literal symbol, the
box, is used and an arrow pointing from the class to the
literal. Again, this is only possible, if the property is not
involved in other relationships.

An example coupling definition graph as it is visualized
by VizCo is shown in figure 5 (see section 4).

3.5.2 The Action History Language

The user interactions withVizCo during domain view defini-
tion in step 3 of the coupling definition process are captured
by expressions of an action history language. The syntax
of this language is described by the BNF grammar depicted
in figure 4. Starting from the empty graph the language
describes the step-by-step construction of the coupling def-
inition graph. For this purpose it contains actions to add
elements to the coupling definition graph and to move the
focus in the graph. Furthermore, it is also possible that a
user withdraws elements from the coupling definition graph
during a session. The top level rule of the grammar (defin-
ingactionGraph) reflects these three categories of actions:

Constructive actions: addToGraph de-
fines five ways for extending the graph. With
addClassToGraph (op1), addPropertyToGraph (op2),
andaddRelationToGraph (op3) the basic SRG elements
can be added to the coupling graph.

actionGraph ::= addToGraph | moveFocus | withdrawFromGraph |emptyGraph

withdrawFromGraph ::= withdrawClassFromGraph | withdrawPropertyFromGraph
 | withdrawRelationFromGraph

addToGraph ::= addClassToGraph | addPropertyToGraph | addCouplingFlagToGraph
 | addRelationToGraph | addConditionToGraph

moveFocus ::= moveFocusToClass | moveFocusToProperty

addClassToGraph ::= 'addClassToGraph(' actionGraph ',' class ')'
addPropertyToGraph ::= 'addPropertyToGraph(' actionGraph ',' property ')'
addRelationToGraph ::= 'addRelationToGraph(' actionGraph ',' relation ')'
addConditionToGraph ::= 'addConditionToGraph(' actionGraph ',' compareExp ',' property ')'
addCouplingFlagToGraph ::= 'addCouplingFlagToGraph(' actionGraph ',' option ',' property ')'

withdrawClassFromGraph ::= 'withdrawClassFromGraph(' actionGraph ',' class ')'
withdrawPropertyFromGraph ::= 'withdrawPropertyFromGraph(' actionGraph ',' property ')'
withdrawRelationFromGraph ::= 'withdrawRelationFromGraph(' actionGraph ',' relation ')'

moveFocusToClass ::= 'moveFocusToClass(' actionGraph ',' class ')'
moveFocusToProperty ::= 'moveFocusToProperty(' actionGraph ',' property ')'

class ::= elementName ',' elementAlias ',' elementURI
property ::= elementName ',' elementAlias ',' elementURI ',' domainClassAlias
relation ::= elementName ',' elementAlias ',' elementURI

emptyGraph ::= 'emptyGraph'
elementName ::= LITERAL
elementAlias ::= LITERAL
elementURI ::= LITERAL
compareExp ::= LITERAL
domainClassAlias ::= LITERAL
option ::= 'yes' | 'no'

Figure 4. BNF Grammar for the action history

The rule addConditionToGraph (op4) is contained
within the grammar to define a condition for a domain view
definition. Conditions are added to properties contained
in the coupling definition graph. The condition contains a
comparison expressioncompareExp. The substructure of
this expression is not further analyzed by the grammar.

addCouplingF lagToGraph refers to a property and
determines, if this property becomes part of the dfined do-
main view. Theoption rule defines the options ”yes”(op5)
and ”no”(op6) for this purpose.

Destructive actions: withdrawFromGraph with-
draws either a class (withdrawClassFromGraph), a
property (withdrawPropertyFromGraph), or a rela-
tion (withdrawRelationFromGraph) from the coupling
definition graph. In order to have a connected graph,
withdraw can only be applied on graph nodes, which
are related at most with one other node (due to the
VizCo rules, only the first selected class is a class with-
out relations to another node). Automatically the rela-
tion, if existent, will also be withdrawn by applying the
withdrawRelationFromGraph rule. Arcs (relations) can
only be removed from the graph, when this is not the last arc
connecting.

Navigation actions: moveFocus supports the rule-
restricted control of navigation in the graph. The focus
in the graph(s) will be either automatically moved (e.g. if
the user selects a class within the domain model graph) or
manually set within the coupling definition graph (in accor-
dance to the given interaction constraints inVizCo). Syn-
chronously, the focus is moved in the domain model graph.
The focus only can be set on a class (moveFocusToClass)
or a property (moveFocusToProperty).

class, property, andrelation containelementName,

elementAlias andelementURI which represent the ter-
minal rules.elementAlias is an identifier (a variable) for
theinstance domain model element, whileelementName
is the label of the domain model element (e.g. label of a
class) serves the purpose to be displayed within the coupling
definition graph.elementURI is a unique reference to the
domain model element and is used for the RDF schema
to SQL statement conversion. Furthermore,property also
contains adomainClassAlias referring to the class, which
is the domain of the respective property.

3.6 RDF Query generation

In step 4 of the coupling definition process the action his-
tory expression is converted into a domain view description
that is based on the RDF query languageRDF Query [11].

3.6.1 RDF query

This subsection gives a short summary of the relevant parts
of RDF Query. RDF Query is a simple query language for
RDF developed by IBM. Its main advantages are its clear
descriptive character and its representation in XML. The
RDF Query model mainly contains the following elements:

1. The query itself is represented by anrdfquery
element and containsfrom, union, intersection, and
difference (to be Relational Algebra compliant).

2. Elementfrom containsselect andorder. Theselect
element defines the RDF Schema elements (i.e. class and
property) to be included within the Coupling definition. At
this time an ordering is not necessary within the Coupling
definition, thusorder will not be used.

3. Within select we have theselectProperty1,
condition, andgroup element. group is not relevant for
our work.

4. condition containsselectProperty-selectProperty
relations orselectProperty-String relations. These can
be combined with logical operatorsnot, and,andor.

5. A property has the attributesname (which is in our
case the URI of theselectProperty) andalias. To keep
the alias of a property is not adequate, since we have to
know the domain classalias of the property in order to
convert the RDF query into a SQL statement.

3.6.2 Generation of the RDF-based View Description

Before starting the generation process the action history is
reduced by a preprocessor. For the RDF view generation
not all actions in the history are relevant.add actions
and theemptyGraph action are, of course, relevant for
the generating function. SincemoveFocus does not

1We chose the nameselectP roperty instead ofproperty (as it is
defined within the RDF Query specification) to keep them apart.

M
′
class M

′
prop M

′
relprop Msel Mcond

op1 ∪M
′
class - - ∪M

′
class -

op2 - ∪M
′
prop - ∪M

′
prop -

op3 - - ∪M
′
relprop - -

op4 - - - - ∪Mcond

op5 - ∪M
′
prop - - -

op6 - −M
′
prop - - -

Table 2. Operations and sets of R(C)

manipulate the resulting coupling definition at all and
withdrawFromGraph can be considered as a “undo”
action, both types of actions are eliminated from the
action history. ThemoveFocus actions may be sim-
ply deleted. To remove the withdraw actions and the
corresponding add actions, the preprocessor makes the
following steps. First step is to find the nextwithdraw
expression. Thereafter, the correspondingadd is identified
and both expressions are removed. The preprocessor
repeats these steps, until allwithdraw expression are
removed. So the relevant rulesaddClassToGraph,
addPropertyToGraph, addRelationToGraph,
addCouplingF lagToGraph (either with option=yes
or option=no), addConditionToGraph are remaining.

In order to make the resulting domain view definition
format selfcontained, we slightly modify the RDF query
format. We add the part of the domain model underlying
the view definition as an supplementary part to the RDF
query expression used for view definition. Both parts to-
gether form a complete view definition and are generated
from the action history expression. For generating these
two parts a coupling generation functionc is defined, which
produces a RDF view definition document based on the ex-
pression of the action history language.

Let Sc= (M
′
class, M

′
prop, M

′
relprop) be the submodel of

the domain modelSRDF to be included into the domain
view definition. Sc contains the domain model elements
which are referred by the action history expression after
eliminating the withdraw actions.

The second part of the RDF view definition is the RDF
query defining the conditions for the view. For this purpose
we only use the selection and the condition element of RDF
Query (plus the from element for referring to the domain
model). The queryQRDF may thus be represented by a
tuple consisting of a setMsel representing the selection ele-
ments and a setMcond representing the condition elements
of the query (QRDF = (Msel, Mcond)). The range of c,
thus, is defined as follows.Definition D10:

R(c) =
〈

Sc
QRDF

〉
=

〈 M
′
class

M
′
prop

M
′
relprop
Msel

Mcond

〉
, with M

′
class

⊆ Mclass ,

M
′
prop ⊆ Mprop , andM

′
relprop

⊆ Mrelprop .

The domain of the function c is the RDF domain model

SRDF .
So, the generating function c has to analyze the re-

duced action history and has to create the five sets
M

′
class, M

′
prop, M

′
relprop, Msel, andMcond. Table 2 sum-

marizes the rules for creating these sets starting from five
empty sets. The first column contains the possible ele-
ments of the action history and the first row contains all
sets of R(c). The table entries specify the impact for
the respective set, when the respective action is found in
the action history. For the pairaddClassToGraph and
M

′
class, for example, the action in the action history is

addClassToGraph(graph, c) and the resulting set opera-
tion isM

′
class := M

′
class ∪ c, which is denoted as∪M

′
class

in the table. Parameters are omitted since they are obvious.
“-” means “no action” (the set stays as it is).

3.7 Query conversion

The last step within the Coupling Definition Process is
the conversion of the RDF view definition into SQL query
expressions.

There are three parts within the SQL structure, which are
relevant for the conversion process. These aresql : select2

(where requestedcolumns are specified),sql : from
(where requestedtables are specified), andsql : where
(where requestedsql : conditions are specified). Instead
of sql : select there is alsosql : insert, sql : update, or
sql : delete for the propagation of changes.

Starting point of the conversion is the RDF view defini-
tion produced by the previous step of the coupling definition
process. This view definition contains RDF Query select el-
ements (we refer to them asrdfq : select) and RDF Query
condition elements (rdfq : condition). rdfq : select con-
tains either aproperty or aclass. Based on definition D9
we define the inverse functiongsmap(SRDF):

Definition D11:
�gsmap(SRDF) = �f

−1
smap

(〈
Mclass
Mprop

Mrelprop

〉)
=〈

fclass(Mclass)
fprop(Mprop)

frelprop(Mrelprop)

〉
=

〈
Mtab
Mcol
Mrel

〉
Converting RDF

query expressions into SQL expressions allproperty
elements contained in ardfq : select are inserted into
sql : select as acolumn resulting from the conversion
with fprop. Thealias of the domainclass related to the
property is inserted astable into thesql : from clause. So,
if we concatenate thecolumn andtable elements with the
correspondingalias we can build up the SQL statement
accordingly. As an example, we consider twoproperty
elementsprop1 and prop2. Both havealias :=′ c2′.
Furthermore, we assume aclass elementclassX with the
alias :=′ c2′. With D10 we getcol1 := fprop(prop1),

2We assume an XML representation of SQL statements that is marked
by the namespace prefix sql.

col2 := fprop(prop2), andtabX := fclass(classX). The
following SQL statement will be generated:select c2.col1,
c2.col2 from tabX c2. If anotherclass elementclassY
(tabY := fclass(classY)) which is related toclassX has
been added to the query, also arelproperty elementrp1
is included3 and will be transformed into arelationship
elementrel1 := frelprop(rp1).

Using the inverse function offrel defined in D6rel1 be-
comesrel1 = (< foreignkey >, < foreignkeytab >
, < primarykeytab >) = (fk1, tabX, tabY) and the SQL
statement will be extended withtabY c3 (consideringtabY
alias = c3). The inverse function of functionf tab defined
in D4 returns theprimarykey pk3 of tabY . We are now
able to specify the natural Join oftabX andtabY and we
getselect c2.col1, c2.col2 from tabX c2, tabY c3 where
tabY.pk3 = tabX.fk1.

Now only rdfq : condition remains to be converted.
We can easily translate therdfq : condition into a sql :
condition by using the inverse functions of the functions
defined in D4-D6. After translation, thesql : condition
can be added to the SQL statement. As boolean operator to
connect we chooseand.

As we illustrated in chapter 3.1, the user interface, as an
example application of the coupling, gets all information to
retrieve and modify the coupled data records. So far we only
covered data selection.If modified data in the user interface
have to be synchronized with application data, an additional
mapping is required. For synchronization the RDF query as
well as the modified result setRSm will be available.

For space reasons we only give a short description on
how this case is handled by the coupling processor. The
processor takes the original result setRSo, which is either
cached or retrieved again with help of the SQL statement,
and compares it withRSm. If there are records withinRSm

and not withinRSo, these records have to be inserted. Sup-
ported by the definitions D1-D11 it is possible to split the
generated SQL statement for having a separate insert state-
ment for eachtable. In the inverse case there are records
within RSo and not inRSm. and adelete statement has to
be generated. If the record ofRSm has the same identifier
as the record ofRSo, but at least one value is different, then
this implies an update statement.

4 The VizCo Tool

4.1 Web Application Development Framework

Our Web application development framework aims at
supporting the development and evolution of Web applica-
tions (and their user interfaces) in the area of information,

3If there is norelproperty for a pair of class elements the result
would be a Cartesian product.

content and knowledge management in a flexible and user-
friendly way. In doing this we follow a meta-design ap-
proach [6] by integrating an authoring tool suite as integral
part into the system itself. The tools of this suite are used to
set up and customize applications as well as to adapt them to
evolving business process requirements. It is the goal of the
meta-design approach to actively involve part of the users
into the design and development process in order to make
their (domain) expertise usable in the system in a more di-
rect way [14]. The underlying development paradigm is
model-based: domain model components, user model, user
interface model, etc. are set into relationship to each other
in the design process.

The Form Dialog Manager, mentioned in section 3.1, is
just one of the authoring tools in the tool suite. Other au-
thoring tools enable e.g. setting up menus, building up tax-
onomies [15], classifying content as well as design-related
information objects, and controlling the flow of the business
process in the application.

The Web application development framework is based
on a flexible and extensible, component-based architecture.
The implementation is database independent and uses the
Web service paradigm for component interaction in order
to improve flexibility, extensibility, and reusability. Interac-
tion with other system components is facilitated by an ex-
tensive use of standards like XML, RDF, SOAP, XForms,
etc.

The prototypical implementation of the Web application
framework has been successfully used to set up an opera-
tional e-Learning applications [8] as well as a system for
supporting trade fair business processes [14]. Currently, a
new version of the Web application development framework
is under development with an extended and improved set of
system authoring tools.

4.2 VizCo Use Cases

The user interface of theVizCo tool consists of a win-
dow with two parts. The left part of the window contains
the SRG of the domain model and the right side shows the
current state of the composed coupling definition graph (see
figure 5). Starting point of aVizCo session is an empty cou-
pling definition graph (or the result graph of the previous
coupling definition session).

The notion of the ”current focus” is an important concept
in the interaction withVizCo. This concept is e.g. used to
ensure that the resulting coupling definition graph is con-
nected: In each step only those elements in the domain
model can be selected that are connected with the focus el-
ement in the graph.

After selecting an element on the left side (in the domain
model),VizCo moves the focus on both sides to the selected
element. A selection is only possible for class and property

Figure 5. Snapshot of VizCo while defining a Coupling

elements. On selection of an element (class or property)
the arc connecting the selected element with the current fo-
cus element is automatically inserted into the coupling def-
inition graph and is selected for inclusion into the domain
view. Only in cases of disambiguities (two arcs connecting
the same two elements) user interaction is required. Rel-
properties, which are represented by an arc in the SRG, are,
thus, not directly selected by the user.

When a class is selected in the domain model graph (by
mouse click), a named instance of that class appears within
the right part of the window (thus this instance becomes
part of the domain view). To be more precise, this is rather
a placeholder for possible instances in the view than an ac-
tual instance. Properties are selected in the same way as
classes for inclusion into the domain view. As discussed in
the context of the action history language, two cases have to
be distinguished here:

1. The user wants to define one or more conditions for
the selected property. In this case the respective property
is selected in the coupling definition graph and a condition
definition dialog is opened via the right mouse button.

2. The user wants to decide, if the selected property be-
comes part of the domain view. In this case, the user opens
the coupling flag dialog and decides about the inclusion.

In order to withdraw a class or property from the cou-
pling definition graph, the respective element is selected on
the right side of the window and the option withdraw is cho-
sen from the menu showing up on a right mouse click. The
condition for withdrawing an element have already been
discussed in section 3.5.2.

If two properties are used to connect their domain classes
(no direct relationship between the classes) via the values
of the properties a special arc is inserted into the graph to
keep the graph connected and to visualize the link defined
between the two properties. To define such a connection,
the second property is selected, when the focus is on the
first property. This inserts the property and the class, which
is the domain of the property into the coupling definition

graph and automatically opens a condition definition dia-
log. When the condition definition dialog is completed, the
respective link is inserted into the graph.

5 Conclusions and Future Work

In this paper we presentedVizCo, a tool for visually
defining couplings of Web application elements like user
interface components with a domain model and indirectly
with the underlying application data. The used domain
model is automatically extracted from the application data
schema and possibly further enriched by the user. We de-
scribed the steps of the coupling definition process at design
and runtime. Furthermore, we discussed the mappings and
representation formats that are necessary to cover the vari-
ous steps of the coupling definition process.

A first prototype of the Web application framework and
its application system authoring tool suite includingVizCo
is implemented. However, we are still working on improve-
ments ofVizCo and the other tools. In more details, future
work in the further development ofVizCo focuses on the
following issues.

The mappings approach defined forVizCo will be ex-
tended in order to handle RDF in a more comprehensive
way. A mapping and integration of ”native” support for
RDF content management and query language processing
will be investigated. This will facilitate the management
of user defined enrichments of the domain model (e.g. by
subclass relationships). A further challenge of this integra-
tion is the adequate mapping of the semantic of such enrich-
ments onto the SQL queries. This issue will be addressed in
the next version of theVizCo tool.

Currently we are using IBM’s RDF query as the basis for
an intermediate exchange format for coupling definitions.
As soon as an RDF query language standard becomes avail-
able, the tool and its mappings will be adapted to this stan-
dard.

A further area of future work is the exploitation ofVizCo

in other places of the Web application development frame-
work. We already integratedVizCo with the Form Dialog
Manager to enable a coupling between the domain model
and elements of a form based user interface. As next goals
we plan to integrateVizCo with an data analysis engine en-
abling the user friendly customization of the engine and
with an information visualization framework enabling the
flexible coupling of visualization elements with the data of
the application domain (via the domain model). Besides
an extension of the Web application development frame-
work we also expect further input for the improvement of
theVizCo tool itself from these integration activities.

References

[1] M. Angelaccio, T. Catarci, and G. Santucci. Qbd*: A graph-
ical query language with recursion. InIEEE Transaction on
Software Engineering, volume 16 of10, 1990.

[2] T. Berners-Lee, J. Handler, and O. Lassila. The semantic
web. Scientific American, Special Issue on “Intelligent Sys-
tems/Tools In Training And Life-Long Learning“, 2001.

[3] Chen. The entity-relationship model: Towards a unified
view of data. InACM Transactions on Database Systems,
1976.

[4] M. P. Consens, I. F. Cruz, and A. O. Mendelzon. Visualiz-
ing queries and querying visualizations.SIGMOD Record,
21(1):39–46, 1992.

[5] M. Dubinko, L. Klotz, R. Merrick, and T. V. Raman. Xforms
1.0 specification-w3c candidate for recommendation, 2002.

[6] G. Fischer and E. Scharff. Meta-design: Design for design-
ers. InProceedings in DIS2000 Conference, 2000.

[7] J. Foley, C. Gibbs, W. Kim, and S. Kovacevic. A knowledge-
based user interface management system. InReadings in In-
telligent User Interfaces, San Francisco, 1998. ACM Press.

[8] M. Fuchs, C. Muscogiuri, C. Niederée, and M. Hemmje.
An open framework for integrated qualification management
portals. InThirteenth International Workshop on Database
and Expert Systems Applications, 2002.

[9] K. Goldman, S.A.Goldman, P. Kanellakis, and S. Zdonik.
Isis: Interface for a semantic information system. InACM-
SIGMOD Intl. Conf. on Management of Data. ACM Press,
1985.

[10] G. Karvounarakis. Rdf query languages: A state-of-the-art,
1999.

[11] A. Malhotra and N. Sundaresan. Rdf query specification.
QL’98 - Query Languages 1998, 1998.

[12] M. Marchiori and J. Saarela. Query + metadata + logic =
metalog. QL’98 - Query Languages, 1998.

[13] L. Miller. Rdf query by example. QL’98 - Query Languages,
2002.

[14] C. Muscogiuri, C. Niederée, M. Hemmje, and M. Fuchs.
Towards meta-design for e-business: Experiences & chal-
lenges. InProceedings of the Human Computer Interaction
Consortium Winter Workshops (HCIC 2002), 2002.

[15] C. Niederée, C. Muscogiuri, and M. Hemmje. Taxonomies
in operation, design, and meta-design. InProceedings of the
International Workshop on Data Semantics in Web Informa-
tion Systems (DASWIS). IEEE CS, 2002.

[16] A. Puerta and J. Eisenstein. Towards a general compu-
tational framework for model-based interface development
systems. InProceedings of the Intelligent User Interfaces.
ACM Press, 1999.

[17] A. R. Puerta. A model-based interface development envi-
ronment. InIEEE Software, volume 14 of4, 1997.

[18] A. R. Puerta, Eriksson, Gennari, and Musen. Model-based
automated generation of user interfaces. InReadings in In-
telligent User Interfaces, San Francisco, 1998. ACM Press.

[19] M. Sintek and S. Decker. Triple—a query, inference, and
transformation language for the semantic web. International
Semantic Web Conference (ISWC), Sardinia, 2002.

[20] C. Wiecha, W. Bennett, S. Boies, J. Gould, and S. Greene. A
tool for rapidly developing interactive applications. InRead-
ings in Intelligent User Interfaces, San Francisco, 1998.
ACM Press.

[21] M. Zloof. Query-by-example: Operations on the transitive
closure. Research RC5526, IBM, Yorktown Heights, 1976.

